Evidence-based Neuropsychological Assessment for Patient’s with Pharmacoresistent Epilepsy

Mike R. Schoenberg, Ph.D., ABPP
Professor
Dept. of Neurosurgery and Brain Repair
University of South Florida Morsani College of Medicine
Licensed Psychologist
Disclosures

• Salary support from State of Florida, USF practice plan and Florida Dept. of Elder Affairs

• Honoraria and/or research support from:
 – Springer
 – Oxford University Press
 – American Academy of Clinical Neuropsychology
 – OVID Pharmaceuticals
 – National Institute of Health

• Consultant: Dart Pharmaceutical, Geico, Progressive, RPSLaw, CSKlegal, Yeslow & Koeppel, PA

• Deputy Editor-in-Chief, Archives of Clinical Neuropsychology
Objectives

- Neuropsychological Assessment in Epilepsy
 - Predicting outcomes
 - Assessing neurobehavioral comorbidity of epilepsies
- Neuropsychological Tests per domain
 - Common Data Elements
 - General Cognitive/IQ
 - Attention/executive
 - Language
 - Memory
 - Memory
 - Visuoperceptual/constructional
 - Motor
 - Mood
- Evidence-based Medicine For Neuropsychology in Epilepsy
 - Predict memory/language outcome
 - Predict Seizure outcome
What is Neuropsychology

- Neuropsychology is a discipline and a science.
- Study of brain-behavior relationships
 - Identify neuropsychological correlates of brain function
- Neuropsychology practice combines behavioral neurology with the psychometric foundations of psychological science and measurement.
Historical Overview of Neuropsychology

• Origins of Neuropsychology
 – Relationship to Behavioral Neurology
 • Functional Anatomical Correlation
 • Cortical Localization/Lateralization
 – Relationship to Psychology
 • Normative comparisons
 • Quantifying Brain Functions
 • Standardized tests
Historical Overview of Neuropsychology

- Origins of Neuropsychology
 - Relationship to Behavioral Neurology
 - Functional Anatomical Correlation
 - Cortical Localization/Lateralization

- Relationship to Psychology
 - Normative comparisons
 - Quantifying Brain Functions
 - Standardized tests
Patient H.M.

• Henry Molaison (2/26/26-12/2/08)
 – High school graduate. Worked as a motor winder
 – Medication refractory epilepsy since age 10 YO
 • Nonlocalized partial and generalized seizures
 • Disabled by seizures and, likely, high doses of medications.

• Bilateral temporal lobectomy by William Scoville (1953) at 27 YO
Patient H.M.

- Sig. sz reduction but had dense antegrade amnesia
 - Studied since mid 50’s by Dr. Brenda Milner and others
- Advanced understanding of learning/memory and their neuroanatomical correlates
Neuropsychology in epilepsy

- Neuropsychology in Epilepsy Centers has long tradition
 - Improve **cognitive**, emotional, and functional outcome from treatment of epilepsy.
 - **Predict cognitive outcome from surgery**
 - Avoid profound amnestic syndrome (patient HM and others)
 - Study of functional neuroanatomical organization of memory
 - **Document cognitive effects of treatment (AEDs/VNS)**
 - Assist in localization/lateralization of brain dysfunction
 - Predict seizure freedom in some limited cases (MRI negative)
 - Identify treatment needs (speech/cognitive rehab, meds, OT/PT, work/school accommodations, etc.)
 - Answer questions about capacity
 - **Return to Work, ability to live independently, Driving, Etc.**
Why do doctors and patients care about cognitive aspects of epilepsy?

Clinical Perspective -
• Treatment goal to eliminate seizures, and improve:
 – (prevent decline in) cognitive function,
 – (not adversely affecting) behavior/mood,
 – Quality of life.
• Cognitive and psychiatric comorbidity:
 – Reduces treatment effectiveness
 • Cognitive complaints associated with d/c’d AED in up to 40% of patients
 – Increases costs of care
 – Decreases Quality of life

Research/Theoretical Perspective -
• Better characterize/predict manifestations of neuropathology
Non-independent factors affecting cognitive function in epilepsy

Aldenkamp AP. Seizure 2006
Objectives

- Neuropsychological Assessment in Epilepsy
 - Predicting outcomes
 - Assessing neurobehavioral comorbidity of epilepsies

- Neuropsychological Tests per domain
 - Common Data Elements
 - General Cognitive/IQ
 - Attention/executive
 - Language
 - Memory
 - Visuoperceptual/constructional
 - Motor
 - Mood

- Evidence-based Medicine For Neuropsychology in Epilepsy
 - Predict memory/language outcome
 - Predict Seizure outcome

- Cognitive/behavioral effects of AEDs
NINDS Common Data Elements

- Established set of disease and outcome variables for specific diseases – INCLUDING EPILEPSY
- To much variability in research assessing epilepsy
- Provide guidance for neuropsychological measures to include in research
- Neuropsychological tests with evidence-base in epilepsy for Adults and Pediatric Patients
- Include tests in:
 - General Cognitive/IQ
 - Attention/executive
 - Language
 - Memory
 - Visuoperceptual/constructional
 - Motor
 - Mood
 - Quality of Life
General Cognitive (IQ) function

- Why given?
 - Adults
 - Indicator of General capacity
 - Pediatrics
 - Strongly lateralized findings in children, predictive of seizure freedom
 - Required for School accommodations and determination of learning disability

- Adults
 - Wechsler Abbreviated Scale of Intelligence (WASI)
 - Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV)

- Pediatrics
 - WASI or 2nd Ed. (WASI-II)
 - Wechsler Intelligence Scale for Children-4th Ed. (WISC-IV)
 - Wechsler Preschool and Primary Scale of Intelligence-4th Ed. (WPPSI-IV)
 - Differential Ability Scales-2nd Ed. (DAS-II)

- Infants/toddlers
 - Bayley Scales of Infant and Toddler Development-3rd Ed. (Bayley-III)
Speed: Processing and Psychomotor Speed

• Why given?
 – Adults
 • Indicator of General cognitive function
 • Diagnosis and Treatment planning
 – Pediatrics
 • Predictive of long-term outcome and academic achievement
 • Diagnosis and Treatment planning

• Adults
 – WAIS-IV Digit Symbol and Symbol Search subtests
 • Processing Speed Index
 – CPT-II Hit Rate Reaction time
 – Grooved Pegboard Test
 – Finger Tapping Test

• Pediatrics
 – WISC-IV Digit Symbol and Coding subtests
 • Processing Speed Index
 – CPT-II Hit Rate Reaction Time
 – Grooved Pegboard Test
 – Finger Tapping Test
 – WRAVMA Pegboard Test
Attention & Executive Tests

- **Attention**: focused, selective, divided, sustained
- **Executive**: reasoning, problem solving, inhibition, planning, initiation, and maintenance of behavior
- **Why given?**
 - **Adults**
 - Indicator of capacity/competency and maybe used for lateralization/localization
 - **Pediatrics**
 - Indicator of localization/lateralization
 - Used in diagnosis of Attention Deficit Hyperactivity Disorders (ADHD)
 - Predictive of school adaptation and adaptive skills
Attention/Working Memory

Adults

Focused/Selective Attention:
- Wechsler Digit Span subtest
- Trail Making Test, Parts A & B
- Delis-Kaplan Executive Function System (DKEFS: Trail Making)
- Stroop Word & Color
- Test of Everyday Attention (TEA)

Divided Attn/Working Memory:
- Wechsler Digit span backwards
- Wechsler Letter/# sequencing

Sustained Attention/Vigilance:
- Conners’ Continuous Performance Test-2nd Ed. (CPT-II)

Pediatrics

Focused/Selective Attention:
- Wechsler Digit Span Subtest
- Trail Making Test, Parts A & B
- DKEFS: Trail Making
- Stroop Word and Color
- Test of Everyday Attention for Children (TEA-Ch)

Divided Attn/Working Memory:
- Wechsler Digit span backwards
- Wechsler Letter/# Sequencing

Sustained Attention/Vigilance:
- CPT-II
- Conners’ Kiddie Continuous Performance Test (K-CPT)
- Test of Variable Attention (TOVA)
Attention: Trails A
Executive Function Assessment

• **Adults**
 - Sequencing/Set-shifting
 - Trail Making Test, Part B
 - Wisconsin Card Sorting Test-64 Ed. (WCST-64)
 - Delis-Kaplan Executive Function System (DKEFS: Trail Making)
 - Flexibility/Fluency
 - Verbal/Figural Fluency
 - Problem solving/reasoning:
 - WCST-64
 - DKEFS: 20 Questions
 - Tower of London
 - DKEFS-Tower Test
 - Inhibition/interference
 - ?Stroop Color-Word Interference

• **Pediatrics**
 - Sequencing/Set-shifting
 - Trail Making Test, Part B
 - WCST-64
 - DKEFS: Trail Making
 - Flexibility/Fluency
 - Verbal/Figural Fluency
 - Problem solving/reasoning:
 - WCST-64
 - DKEFS: 20 Questions
 - Tower of London
 - DKEFS-Tower Test
 - Inhibition/interference
 - ?Stroop Color-Word Interference Trial
 - General/Inhibition/Personality
 - Behavior Rating Inventory of Executive Function (BRIEF)
Executive: Sequencing
Executive Functions: Reasoning

• Deductive reasoning
 • How is coal and wood alike?
 • How is bacteria and humans alike?
• Inductive reasoning
 • 5 different uses for a brick
Language Tests

- **Includes Expressive/Receptive Language**
 - Children/adolescents
 - ADD Reading Comprehension, spelling, writing

- **Why given?**
 - Adults
 - Indicator of lateralization/localization
 - Used to predict language outcome for surgical patients
 - Used to predict seizure freedom in limited, nonlesional cases
 - Pediatrics
 - Indicator for lateralization/localization
 - Used in diagnosis of learning disorder
 - Predictive of language outcome for surgical patients
Language Tests

Adults

- **Expressive**
 - Controlled Oral Word Association Test (COWAT) of the Multilingual Aphasia Exam
 - Delis-Kaplan Verbal Fluency
 - Semantic verbal fluency Test
 - Boston Naming Test (BNT)
 - Columbia Auditory Naming Test

- **Comprehension**
 - Peabody Picture Vocabulary Test-4th Ed. (PPVT-IV)
 - Token Test

- **Phonetics**
 - Comprehensive Test of Phonological Processing-2nd Ed. (CTOPP-2)

Pediatrics

- **Expressive**
 - COWAT - BNT
 - DKEFS – Verbal Fluency
 - Semantic Verbal Fluency Test
 - NEPSY-II Word Generation
 - Expressive One Word Picture Vocabulary Test

- **Comprehension**
 - PPVT-IV - Token Test
 - Receptive One Word Picture Vocabulary Test
 - NEPSY-II Comp. of Instructions

- **Phonetics/combined**
 - CTOPP-2
 - Clinical Evaluation of Language Fundamentals-4th Ed. (CLEF-4)
Object naming:
Easy Item
Object Naming:
Difficult Item
Verbal Fluency

Letter (phonemic) Fluency

- Words you can think of starting with letter…. F, A, S

Semantic (category) fluency

- Name as many different … Animals….as you can
Visuoperceptual/Constructional

- Includes Visuoperceptual, Visuospatial, and Visuoconstructional functions
- Why given?
 - Adults
 - Indicator of lateralization/localization
 - Pediatrics
 - Indicator for lateralization/localization
 - Used in diagnosis of learning disorder
 - Mathematics Deficits due to visual inattention
Visuoperceptual/Constructional Tests

Adults
- Wechsler Block Design Subtest
- Rey Osterrieth-Complex Figure (ROCFT)
- Benton Line Orientation Test
- Hooper Visual Organization Test

Pediatrics
- Wechsler Block Design
- Wechsler Perceptual Reasoning (Organization) Index
- Add Matrix Reasoning/Picture Completion
- ROCFT
- NEPSY-II Pattern Construction
- Wide Range Assessment of Visual Motor Abilities (WRAVMA)
- Hooper Visual Organization Test
- Benton Line Orientation Test
Memory Assessments

- Memory and Learning – comprehensive
 - Wechsler Memory Scale – III / IV
 - Wide Range Asses. of Learning and Memory - 2

- Auditory (verbal) learning and memory
 - Auditory Verbal Learning Tests
 - Story Memory
 - Verbal Paired Associates

- Visual (non-verbal) memory
 - Complex Figure Test (ROCFT, ACFT, RBANS)
 - Tactual Performance Test (Memory & Location)
 - Warrington Face Memory
 - Visual Paired Associates
Memory Tests

- **Declarative Memory Assessment and Learning**
- **Assessment of Verbal (Auditory) Memory**
 - Immediate (short-term) Memory/Learning
 - Exceeds Auditory/Spatial span and requires mesial temporal function
 - Delayed (long-term) Memory
 - Recall of material after 20-40 minutes
- **Why given?**
Memory Tests

• Why given?
 – Adults
 • Indicator of lateralization/localization
 • **Used to predict memory outcome for surgical patients**
 • Predict seizure freedom in limited, nonlesional cases
 • Diagnosis of Dementia
 • Determination of Capacity
 – Pediatrics
 • Indicator for lateralization/localization
 • Predict memory outcome for surgical patients
 • Predictive of seizure freedom in limited, nonlesional cases
 • Diagnosis and treatment planning
Memory Tests

- **Adults**
 - Verbal (Auditory) Memory
 - Rey Auditory Verbal Learning Test (RAVLT)
 - California Verbal Learning Test-2nd Ed (CVLT-II)
 - Hopkins Verbal Learning Test-Revised (HVLTR)
 - Wechsler Memory Scale-4th Ed.
 - Logical Memory
 - Word Pairs
 - Visual Memory
 - ROCFT recall
 - Wechsler Memory Scale-4th Ed.
 - Visual Reproduction
 - Design Memory

- **Pediatrics**
 - Verbal (Auditory) Memory
 - California Verbal Learning Test – Children’s Version (CVLT-C)
 - Rey Auditory Verbal Learning Test (RAVLT)
 - Child Memory Scale
 - Story Memory
 - Word-Pairs
 - Wide Range Assessment of Memory and Learning – 2nd Ed. (WRAML-2)
 - Visual Memory
 - Rey Osterrieth Complex Figure
 - Child Memory Scale (CMS)
 - Faces
 - Spatial Locations
 - WRAML-2
Verbal Memory

- Bat
- Cannon
- Ray
- Floor
- Orange
- Mayor
- Bus
- Play
- Corner
- Salad
- Lever
- square
Visual Memory

• Memory and Learning – comprehensive
 – Wechsler Memory Scale – III / IV
 – Wide Range Asses. of Learning and Memory - 2

• Auditory (verbal) learning and memory
 – Auditory Verbal Learning Tests
 – Story Memory
 – Verbal Paired Associates

• Visual (non-verbal) memory
 – Complex Figure Test (ROCFT, ACFT, RBANS)
 – Tactual Performance Test (Memory & Location)
 – Warrington Face Memory
 – Visual Paired Associates
Mood/Affect and Quality of Life

• Includes Depression/anxiety, psychosis/delusions, and quality of life

• Why given?
 – Adults
 • Diagnosis
 – 30-35% with depression D/O
 – 20-25% with anxiety D/O
 • Treatment Planning
 • Predict outcome/adjustment from surgery
 – Pediatrics
 • Diagnosis
 • Treatment planning/family adjustment
 • Predict adjustment from treatment
Mood/Affect and Quality of Life

Adults
- Beck Depression Inventory-2nd Ed (BDI-2)
- Beck Anxiety Inventory (BAI)
- Minnesota Multiphasic Personality Inventory-2nd Ed. (MMPI-2)
- Quality of Life in Epilepsy-31 (QOLIE-31) (also -10, -89)
- Liverpool Battery
- Vineland Adaptive Behavior Scales-2nd Ed. (VABS-II)
- Adaptive Behavior Assessment System-2nd Ed. (ABAS-II)
- Sales of Independent Behavior-Revised (SIB-R)

Pediatrics
- Achenbach Child Behavior Checklist (CBCL)
- Achenbach Youth Self Report (YSR)
- Child Depression Inventory-2nd Ed. (CDI-II)
- Beck Youth Inventory-2nd Ed. (BYI-2)
- Revised Children’s Manifest Anxiety Scale-2nd Ed. (RCMAS-2)
- Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A)
- VABS-II
- ABAS-II
- SIB-R
- Child Health Questionnaire
- Quality of Life in Childhood Epilepsy
- Quality of Life in Epilepsy Inv for Adolescents
- Health Related Quality of Life (HRQOL)
- Impact Childhood Neurologic Disability Scale
- Pediatric Quality of Life Inventory
Academic Achievement

• Not core assessment
• Required for evaluation of learning disabilities/school accommodations
• Includes assessment of reading comp, spelling, math
 – Adults
 • Diagnosis
 • Treatment Planning/rehabilitation interventions
 – Pediatrics
 • Diagnosis of LD
 • Treatment planning/school accommodations
 • Can be impaired prior to first recognized seizure
Academic Achievement

- **Adults**
 - Wechsler Individual Achievement Test-3rd Ed. (WIAT-III)
 - Wide Range Achievement Test-4th Ed. (WRAT-4)
 - Woodcock Johnson Tests of Achievement-3rd Ed. (WJ-III)

- **Pediatrics**
 - Wechsler Individual Achievement Test-3rd Ed. (WIAT-III)
 - Wide Range Achievement Test-4th Ed. (WRAT-4)
 - WJ-III)
Objectives

• Neuropsychological Assessment in Epilepsy
 – Predicting outcomes
 – Assessing neurobehavioral comorbidity of epilepsies

• Neuropsychological Tests per domain
 – Common Data Elements
 • General Cognitive/IQ
 • Attention/executive
 • Language
 • Memory
 • Memory
 • Visuoperceptual/constructional
 • Motor
 • Mood

• Evidence-based Medicine For Neuropsychology in Epilepsy
 • Predict memory/language outcome
 • Predict Seizure outcome

• Cognitive/behavioral effects of AEDs
Evidence Based Practice: Epilepsy is a progressive disease

- 20-30% of patients with localization related medication refractory epilepsy decline in cognitive function over 4-7 years.
- Another 20-30% do not exhibit practice effects, suggesting mild declines.
- Predictors of decline:
 - Structural lesion on MRI or Structural atrophy (OR=10)
 - Low IQ (OR=5)
 - Duration of epilepsy (OR=4)
 - Age – older age worse (OR=2)
 - Education (more education decreases risk) (OR=2)
Presurgical Neuropsychology: Predicting Cognitive Outcome from Surgical Treatment

- Side of surgery
- Presence of unilateral mesial temporal lobe sclerosis (MTS) on MRI
- Hippocampal volumetric analysis
- Age of epilepsy onset
- Duration of Epilepsy
- Neuropsychological Preoperative memory scores
- Wada Test findings
 - Contralateral Wada test Inj.
EBM for Predicting Post-surgical outcome: Memory

- **Predictors**
 - Pre-surgical memory scores ≥ 90 (≥25th %)
 - Memory scores 90+ 4 times more likely have Verbal memory decline (OR=3.9)
 - Mesial temporal sclerosis ipsilateral only
 - Age of seizure onset (later age = more risk)
 - Duration of seizures (shorter = more risk)
 - Side of surgery (language dom. ↑ risk)
 - Wada test scores (contralateral inj.=intact)
 - fMRI findings
Predicting postoperative memory decline in temporal lobectomy

- **Verbal memory loss** (by RCI) is
 - twice as high among Left ATLs (44%) than Right ATLs (20%).

- **Visual memory loss** (by RCI) is
 - Similar after both L (21%) & R ATL (23%)

- **Chelune et al., 1991 (WMS-R)**
 - 67% ≥ Avg Memory declined
 - 44% - Low-Avg declined
 - 12% ≤ Borderline declined

- **Prediction of Memory Decline**
 - The better preoperative memory, the greater the postoperative decline.
Prediction of verbal memory loss by WMS-R & presence of hippocampal atrophy (by MRI volumetrics)
(Chelune & Najm, 2001)

<table>
<thead>
<tr>
<th></th>
<th>Left ATL</th>
<th>Odds ratio: Case Controls</th>
<th>Odds ratio: Between Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS-R VMI ≥ 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ATL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMS-R VMI ≥ 90</td>
<td>18.50</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>WMS-R VMI ≤ 90</td>
<td>4.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ATL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMS-R VMI ≥ 90</td>
<td>1.62</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>WMS-R VMI ≤ 90</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intracarotid procedure (Wada test)

- Injection of anesthetic agent (methohexital or sodium amytal) into common carotid arteries
 - De-affernate mesial temporal lobe structures
 - Test language (expressive/receptive)
 - Test memory (8 memory items)
 - Spontaneous recall and recognition from foils
Wada test: Predictive Value

• **Seizure side/seizure freedom**
 - Wada’s memory asymmetry predicted *seizure laterality* in both TL and extra-temporal lobe seizures (Lee et al., 2002)
 - Memory score asymmetries consistent with side of seizure onset were sig. related to *seizure freedom* (Lee et al., 2003)
 - Patients with NO memory asymmetry or asymmetry disparate from side of surgery were less likely to be seizure free
 - Wada results NOT concordant with EEG findings may implicate increase risk for poor seizure outcome

• **Memory**
 - Best use is to predict amnestic syndrome for patients with neuropsychological study memory deficits.
 - Functional adequacy of ipsilateral MTL predictive of post-operative memory change
 - Intact contralateral MTL predictive if patient at risk for amnestic syndrome
Predicting Seizure freedom from Cognitive Function

• Cognition as a predictor of sz outcome in children
 – IQ
 • Highly lateralized IQ (VIQ-PIQ scores >15 points) predictive of seizure laterality in children with left hemisphere language
 • More likely to be seizure free if VIQ/PIQ highly lateralized in correct direction
 – Memory
 • More likely to be seizure free if memory lateralized to side of surgery.
 – Wada test
 • Wada memory asymmetry predicted seizure laterality in both TL and extra-temporal lobe focal seizures (Lee et al., 2002)
 • Memory score asymmetries consistent with side of seizure onset were sig. related to seizure freedom (Lee et al., 2003)
Increased risk for verbal memory loss have:

(Stroup, Langfit, et al., 2003)

- Dominant temporal lobectomy (left ATL)
- Absence of ipsilateral (to seizure focus) mesial temporal lobe sclerosis
- Normal preoperative performance on 2 immediate memory tests
- Normal preoperative performance on 2 test of delayed memory
- Normal Wada memory after contralateral (to seizure focus) amobarbital injection
EBM for Predicting Post-surgical outcome: Language

Predictors

- Dominant hemisphere (Left) resection
 - About 1/3 of patients experience reliable decline
- Pre-surgical naming scores
 - Lower score less likely to decline
- Age of seizure onset
 - Early age of seizure onset less likely to decline
- Duration of seizures
- Presence of structural pathology
- ? Extent of superior temporal gyri resection
Naming Errors and Stimulation of the Superior Temporal Gyrus

Source: Devinsky et al. (1993)
Post-surgical outcome: Quality of Life

Predictors
- Seizure freedom (~70% of patients)
- Less Neuropsychological comorbidity
- Pre-surgical psychiatric symptoms
- Social/family support
- Psychological/coping mechanisms
Objectives

• Neuropsychological Assessment in Epilepsy
 – Predicting outcomes
 – Assessing neurobehavioral comorbidity of epilepsies

• Neuropsychological Tests per domain
 – Common Data Elements
 • General Cognitive/IQ
 • Attention/executive
 • Language
 • Memory
 • Memory
 • Visuoperceptual/constructional
 • Motor
 • Mood

• Evidence-based Medicine For Neuropsychology in Epilepsy
 • Predict memory/language outcome
 • Predict Seizure outcome

• Conclusions – Learning Objective Summary
Conclusions: Key Points

• Epilepsy is associated with neuropsychologic and psychiatric comorbidity
• Cognitive impairment due to complex interaction of non-independent variables
 – Cognitive deficits and psychiatric symptoms can be present before 1st recognized seizure
 – Cognitive deficits present at first onset of unprovoked seizure
 – Structural deficits not present with cognitive impairment
Conclusions: Key Points

• Neuropsychological variables best predictor of memory outcome for patients having ATL
 – Patients with intact memory = greater loss
• Neuropsychological confrontation naming predict post-operative naming deficits
 – Higher BNT score, increased risk for decline
• Neuropsychological variables can assist predict seizure freedom in nonlesional cases when strongly lateralizing.
Questions